- 1. Multiples of 3 and 5
- 2. Even Fibonacci numbers
- 3. Largest prime factor
- 4. Largest palindrome product
- 5. Smallest multiple
- 6. Sum square difference
- 7. 10001st prime
- 8. Largest product in a series
- 9. Special Pythagorean triplet
- 10. Summation of primes
1. 1. Multiples of 3 and 5
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000
233168
sum(i for i in range(1000) if i%3 == 0 or i%5 == 0)
2. 2. Even Fibonacci numbers
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
4613732
def fib(max):
a,b = 1,2
while a <= max:
yield a
a,b = b,a+b
sum(i for i in fib(4000000) if i%2 == 0)
3. 3. Largest prime factor
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
6857
def prime(max):
primes = [2]
for test in range(primes[-1]+1, max+1, 2):
sqrt = int(test ** 0.5)
isprime = True
for i in primes:
if i > sqrt:
break
if test % i == 0:
isprime = False
break
if isprime:
primes.append(test)
for i in primes:
yield i
num = 600851475143
for i in prime(int(num ** 0.5)):
if num % i == 0:
max = i
print(max)
4. 4. Largest palindrome product
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.
906609
def reverse(num):
renum = 0
while num:
renum = renum * 10 + num % 10
num //= 10
return renum
def ispalindrome(num):
return num == reverse(num)
max(i*j for i in range(999) for j in range(999) if ispalindrome(i*j))
5. 5. Smallest multiple
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
232792560
def gcd(a, b):
if b == 0:
return a
return gcd(b, a%b)
def GCD(a, b):
while b:
a, b = b, a%b
return a
def lcm(m,n):
return m*n//gcd(m,n)
def smallest_multiple(n):
if n == 1:
return 1
return lcm(n, smallest_multiple(n-1))
smallest_multiple(20)
6. 6. Sum square difference
The sum of the squares of the first ten natural numbers is,
12 + 22 + ... + 102 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
25164150
sum(range(101))** 2 - sum(x**2 for x in range(101))
7. 7. 10001st prime
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10 001st prime number?
104743
def prime():
primes = [2]
x = 1
while True:
x += 2
sqrt = int(x ** 0.5)
isprime = True
for i in primes:
if i > sqrt:
break
if x % i == 0:
isprime = False
break
if isprime:
yield primes[-1]
primes.append(x)
def primeByIndex(n):
p = prime()
x = 0
for i in range(n):
x = next(p)
return x
primeByIndex(10001)
8. 8. Largest product in a series
Find the greatest product of five consecutive digits in the 1000-digit number.
73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450
40824
d = '''73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450'''
num = 5
dd = '1'*num + d.replace('\n','').replace('0','1'*num)
product = 1
max_product = 0
for i in range(len(dd)-num):
product = product * int(dd[i+num]) // int(dd[i])
max_product = max(product, max_product)
9. 9. Special Pythagorean triplet
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
a2 + b2 = c2
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
----> a < 333 && c > 333
200 375 425
31875000
for a in range(1, 333):
for c in range(333, 1000):
b = 1000-a-c
if a*a + b*b == c*c:
print(a, b, c)
print(a*b*c)
break
10. 10. Summation of primes
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
142913828922
def prime(limit=0):
primes = [2, 3]
for i in primes:
yield i
def is_prime(test):
sqrt = int(test ** 0.5)
isprime = True
for i in primes:
if i > sqrt:
break
if test % i == 0:
isprime = False
break
return isprime
t = 0
while True:
t += 6
if limit and t > limit:
break
for x in [t-1, t+1]:
if is_prime(x):
primes.append(x)
yield x
sum(p for p in prime(2000000))